Imagerie médicaleL'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Fonction softmaxvignette|Fonction softmax utilisée après un CNN (Réseau neuronal convolutif). Ici le vecteur (35.4, 38.1, -5.0) est transformée en (0.06, 0.94, 0.00). Dans ce contexte de classification d'images, le chien est reconnu. En mathématiques, la fonction softmax, aussi appelée fonction softargmax ou fonction exponentielle normalisée, est une généralisation de la fonction logistique. Elle convertit un vecteur de K nombres réels en une distribution de probabilités sur K choix.
Redimensionnement d'imageLe redimensionnement, ou la mise à l'échelle, est une transformation applicable à une qui consiste à en modifier la taille, que ce soit pour l'agrandir ou pour la rétrécir, comme le ferait un zoom. Le redimensionnement existe aussi bien pour les , où il n'implique aucune perte de qualité, que pour les , où il est moins trivial et entraîne des effets indésirables et une perte de qualité. La méthode la plus simple pour réduire la résolution d'une image est de la sous-échantillonner.
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Batch normalizationBatch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015. While the effect of batch normalization is evident, the reasons behind its effectiveness remain under discussion. It was believed that it can mitigate the problem of internal covariate shift, where parameter initialization and changes in the distribution of the inputs of each layer affect the learning rate of the network.
Application non expansiveEn mathématiques, une application non expansive entre espaces normés est une application 1-lipschitzienne. Il s'agit donc du cas limite des applications contractantes, qui sont les applications k-lipschitziennes pour un k < 1. Contrairement aux applications contractantes, les applications non expansives n'ont pas nécessairement de point fixe (par exemple, une translation de vecteur non nul est non expansive et n'a pas de point fixe).
Condition de HölderEn analyse, la continuité höldérienne ou condition de Hölder — nommée d'après le mathématicien allemand Otto Hölder — est une condition suffisante, généralisant celle de Lipschitz, pour qu’une application définie entre deux espaces métriques soit uniformément continue. La définition s’applique donc en particulier pour les fonctions d’une variable réelle. Si (X, d) et (Y, d) sont deux espaces métriques, une fonction f : X → Y est dite a-höldérienne s’il existe une constante C telle que pour tous x, y ∈ X : La continuité höldérienne d’une fonction dépend donc d’un paramètre a ∈ ]0, 1].
Banach fixed-point theoremIn mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.