Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
NeuroéconomieLa neuroéconomie est une branche de recherche au croisement de l'économie et des neurosciences cognitives qui étudie l'influence des facteurs cognitifs et émotionnels dans les prises de décisions, qu'il s'agisse d'investissement, d'achat, de prise de risque ou de consommation. Elle couvre, entre autres, sous l'appellation neurofinance, la prise de décision en matière de placements et d'emprunts et aussi le neuromarketing qui utilise également des outils de pour les études de marché et le comportement des consommateurs.
Théorème de la variance totaleEn théorie des probabilités, le théorème de la variance totale ou formule de décomposition de la variance, aussi connu sous le nom de Loi d'Eve, stipule que si X et Y sont deux variables aléatoires sur un même espace de probabilité, et si la variance de Y est finie, alors Certains auteurs appellent cette relation formule de variance conditionnelle. Dans un langage peut-être mieux connu des statisticiens que des spécialistes en probabilité, les deux termes sont respectivement les composantes "non-expliquée" et "expliquée" de la variance (cf.
Conditioning (probability)Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random.
Regular conditional probabilityIn probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel. Consider two random variables . The conditional probability distribution of Y given X is a two variable function If the random variable X is discrete If the random variables X, Y are continuous with density .