Valeur principale de CauchyEn mathématiques, la valeur principale de Cauchy, appelée ainsi en l'honneur d'Augustin Louis Cauchy, associe une valeur à certaines intégrales impropres qui resteraient autrement indéfinies. Soit c une singularité d'une fonction d'une variable réelle f et supposons que pour a
Pôle (mathématiques)thumb|Représentation de la fonction avec deux pôles d'ordre 1, en z = et z = -. En analyse complexe, un pôle d'une fonction holomorphe est un certain type de singularité isolée qui se comporte comme la singularité en z = 0 de la fonction , où n est un entier naturel non nul. Une fonction holomorphe n'ayant que des singularités isolées qui sont des pôles est appelée une fonction méromorphe. Soient U un ouvert du plan complexe C, a un élément de U et une fonction holomorphe.
Point cardinal (optique)vignette|upright=1.25|Schéma des points focaux objet et image pour une lentille épaisse avec les plans principaux P et P' interceptant l'axe optique. EFL est l'acronyme de Effective Focal Length, la focale étant déterminée comme . La notation V est utilisée ici car on regarde dans le plan vertical. On utiliserai H dans le plan horizontal. vignette|upright=1.25|Points nodaux N et N' pour lesquels le grandissement angulaire est de 1.
Cercle de MohrLe cercle de Mohr est une représentation graphique des états de contrainte à deux dimensions, proposée par Christian Otto Mohr en 1882. Dans un graphique où l'axe horizontal représente l'amplitude de la contrainte normale et l'axe vertical représente l'amplitude de la contrainte de cisaillement, le cercle de Mohr est le lieu des états de contrainte en un point P lorsque le plan de coupe tourne autour du point P. Il s'agit d'un cercle centré sur l'axe horizontal dont les intersections avec l'axe horizontal correspondent aux deux contraintes principales au point P.