In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function (see essential singularity). Technically, a point z0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z0.
A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which either f or 1/f is holomorphic.
If f is meromorphic in U, then a zero of f is a pole of 1/f, and a pole of f is a zero of 1/f. This induces a duality between zeros and poles, that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros.
A function of a complex variable z is holomorphic in an open domain U if it is differentiable with respect to z at every point of U. Equivalently, it is holomorphic if it is analytic, that is, if its Taylor series exists at every point of U, and converges to the function in some neighbourhood of the point. A function is meromorphic in U if every point of U has a neighbourhood such that either f or 1/f is holomorphic in it.
A zero of a meromorphic function f is a complex number z such that f(z) = 0. A pole of f is a zero of 1/f.
If f is a function that is meromorphic in a neighbourhood of a point of the complex plane, then there exists an integer n such that
is holomorphic and nonzero in a neighbourhood of (this is a consequence of the analytic property).
If n > 0, then is a pole of order (or multiplicity) n of f. If n < 0, then is a zero of order of f. Simple zero and simple pole are terms used for zeroes and poles of order Degree is sometimes used synonymously to order.
This characterization of zeros and poles implies that zeros and poles are isolated, that is, every zero or pole has a neighbourhood that does not contain any other zero and pole.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Cet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
En analyse complexe, le résidu est un nombre complexe qui décrit le comportement de l'intégrale curviligne d'une fonction holomorphe aux alentours d'une singularité. Les résidus se calculent assez facilement et, une fois connus, permettent de calculer des intégrales curvilignes plus compliquées grâce au théorème des résidus. Le terme résidu vient de Cauchy dans ses Exercices de mathématiques publié en 1826. Soit un ouvert de , un ensemble dans D de points isolés et une fonction holomorphe.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
Explore la réponse sous-équipée d'un système de 2e ordre et comment l'amortissement affecte la fréquence d'oscillation et la désintégration.
Explore les formes harmoniques sur les surfaces de Riemann, couvrant l'unicité des solutions et l'identité bilinéaire de Riemann.
Explore la passivité dans les systèmes masse-ressort, calculant les fonctions de transfert et assurant la passivité du système par l'assemblage de rétroaction.
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
MDPI2023
, ,
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Cambridge Univ Press2024
,
Notre étude Les phares de Bretagne et leurs nouveaux gardiens. Perspectives et horizons pour les phares automatisés avait pour but de présenter la genèse et le développement du balisage des côtes mondiales ainsi que les différentes innovations technologiqu ...