Orbitale de type gaussienEn chimie numérique, les orbitales de type gaussien (connues aussi comme orbitales gaussiennes ou gaussiennes, en anglais Gaussian orbitals - GTO) sont des fonctions utilisées comme orbitales atomiques dans les méthodes LCAO pour le calcul des orbitales électroniques dans les molécules ou les solides. La raison principale d'utilisation d'une base de fonctions gaussiennes pour des calculs de chimie numérique est le théorème de produit gaussien, qui assure que le produit de deux fonctions gaussiennes centrées sur deux atomes différents est une somme finie de gaussiennes centrées sur un point sur l'axe qui les connecte.
Structure fineEn physique atomique, la structure fine décrit le dédoublement de raies spectrales d'un atome. Détectable par spectroscopie à haute résolution spectrale, la structure fine est un effet d'origine relativiste dont l'expression correcte se déduit à partir de l'équation relativiste pour les particules de spin 1/2 : l'équation de Dirac. Les raies denses observées dans les spectres sont prédites par l'étude de l'énergie d’interaction entre l’électron et le proton sans tenir compte du spin et des effets relativistes de l’électron.
Physique de la matière condenséeLa physique de la matière condensée est la branche de la physique qui étudie les propriétés microscopiques et macroscopiques de la matière dans un état dit « condensé ». Ce terme doit être entendu par opposition à d'autres états de la matière, plus dilués, tels que l’état gazeux et les plasmas, ou encore par opposition à l’étude des atomes ou molécules isolés ou peu nombreux. Son objet d’étude consiste donc principalement dans les solides, ce qui explique que cette branche de la physique a longtemps été désignée par le terme de « physique des solides ».
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Tight bindingIn solid-state physics, the tight-binding model (or TB model) is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the LCAO method (linear combination of atomic orbitals method) used in chemistry. Tight-binding models are applied to a wide variety of solids.
Théorie du champ moyen dynamiqueLa théorie du champ moyen dynamique (DMFT) est une méthode utilisée pour déterminer la structure électronique de systèmes fortement corrélés. Dans ces systèmes, les fortes corrélations électron-électron rendent impossible le traitement de chaque électron comme une particule indépendante agissant dans un potentiel effectif, comme c'est usuellement le cas dans des calculs de structure de bandes conventionnels comme en théorie de la fonctionnelle de la densité.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Nombre quantiqueLes nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
Hybridation (chimie)En chimie quantique, l'hybridation des orbitales atomiques est le mélange des orbitales atomiques d'un atome appartenant à la même couche électronique de manière à former de nouvelles orbitales qui permettent de mieux décrire qualitativement les liaisons entre atomes. Les orbitales hybrides sont très utiles pour expliquer la forme des orbitales moléculaires. Bien que parfois enseignées avec la théorie VSEPR (Valence Shell Electron Pair Repulsion), liaison de valence et hybridation sont en fait indépendantes du VSEPR.