Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Redresseur (réseaux neuronaux)vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.
Fonction d'activationDans le domaine des réseaux de neurones artificiels, la fonction d'activation est une fonction mathématique appliquée à un signal en sortie d'un neurone artificiel. Le terme de "fonction d'activation" vient de l'équivalent biologique "potentiel d'activation", seuil de stimulation qui, une fois atteint entraîne une réponse du neurone. La fonction d'activation est souvent une fonction non linéaire. Un exemple de fonction d'activation est la fonction de Heaviside, qui renvoie tout le temps 1 si le signal en entrée est positif, ou 0 s'il est négatif.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Extreme learning machineEn apprentissage automatique, le terme extreme learning machine (machine à apprentissage extrême) fait référence à un type de réseau de neurones. Sa spécificité est de n'avoir qu'une seule couche de nœuds cachés, où les poids des entrées de connexion de nœuds cachés sont répartis au hasard et jamais mis à jour. Ces poids entre les nœuds cachés d'entrée et les sorties sont appris en une seule étape, ce qui revient essentiellement à l'apprentissage d'un modèle linéaire.