Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Discipline scientifiqueLes disciplines scientifiques (aussi appelées « sciences » ou « domaines scientifiques ») sont des subdivisions de la science et des branches du savoir qui utilisent une méthode rigoureuse et systématique pour étudier un domaine particulier de la connaissance. Les disciplines scientifiques se caractérisent par l'utilisation de la méthode scientifique pour tester des hypothèses, recueillir des données et formuler des théories explicatives sur le fonctionnement et l'histoire du monde naturel et social, voire de mondes abstraits.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Données ouvertesvignette|Autocollants utilisés par les militants des données ouvertes. Les données ouvertes (en anglais : open data) sont des données numériques dont l'accès et l'usage sont laissés libres aux usagers, qui peuvent être d'origine privée mais surtout publique, produites notamment par une collectivité ou un établissement public. Elles sont diffusées de manière structurée selon une méthode et une licence ouverte garantissant leur libre accès et leur réutilisation par tous, sans restriction technique, juridique ou financière.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Chimiethumb|upright=1.5|Structure chimique de l'ADN. La chimie est une science de la nature qui étudie la matière et ses transformations, et plus précisément les atomes, les molécules, les réactions chimiques et les forces qui favorisent les réactions chimiques. La chimie porte sur les éléments suivants : les éléments chimiques à l'état libre, atomes ou ions atomiques. Elle étudie également leurs associations par liaisons chimiques qui engendrent notamment des composés moléculaires stables ou des intermédiaires plus ou moins instables.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Alpha diversityIn ecology, alpha diversity (α-diversity) is the mean species diversity in a site at a local scale. The term was introduced by R. H. Whittaker together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites at a more local scale (alpha diversity) and the differentiation among those sites (beta diversity).
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.