Publication

Synthetic Generation of Activity-related data

Quentin Philippe Bochud
2023
Projet étudiant
Résumé

The field of synthetic data is more and more present in our everyday life. The transportation domain is particularly interested in improving the methods for the generation of synthetic data in order to address the privacy and availability issue of real data. Since we want to generate data for Activity Based Models, the key challenge of this project is to expand the existing simulation generation method, Markov Chain Monte Carlo (MCMC), to generate data about the activities of individuals. This allows us to anonymize people's trips and to analyze how people's behavior is related to their trips (e.g. home-work-supermarket-home for people living alone or home-study-sport-home for students). The generated data can be useful for other studies or for planning in the professional transportation field. Once data is generated, we have to validate the representativity of the synthetic sample compared to the real one. The first step in using MCMC is to prepare the inputs by creating conditional probabilities. The construction of these vectors varies depending on the type of data that we want to generate (e.g. continuous, discrete). In the current version of the existing framework, only discrete attributes are defined. We plan to expand on the generation of continuous attributes and sequential data. The data used are from the Swiss Mobility and Transport Micro Census Data (MTMC). The Federal Office for Spatial Development (ARE) and the Federal Statistical Office (FSO) conducted a national survey to gather the data. This data sample gathers information on people's mobility behaviors. Respondents list their socioeconomic features, their daily mobility routines (such as time or distance to work), and detailed records of their travels throughout a reference period (1 day).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.