Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Nonlinear system identificationSystem identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more. A nonlinear system is defined as any system that is not linear, that is any system that does not satisfy the superposition principle.
Génération automatique de textesLa génération automatique de texte (GAT) est une sous discipline de la linguistique computationnelle qui vise à exprimer sous une forme textuelle, syntaxiquement et sémantiquement correcte, une représentation formelle d'un contenu. Outre ses nombreuses applications existantes ou potentielles - par exemple pour produire automatiquement des bulletins météorologiques, ou des rapports automatisés - elle offre par ailleurs un cadre d'investigation des théories linguistiques, et particulièrement de ses mécanismes de production.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Langage naturelUn langage naturel, ou langage ordinaire, est une langue « normale » parlée par un être humain. Il s'oppose au langage formel, tel que le langage informatique, ainsi qu'aux langues construites. histoire des langues On désigne par langage naturel le langage parlé par les humains, apparu entre et avant notre ère.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Ressources et consommation énergétiques mondialesLes réserves mondiales prouvées d'énergie fossile pouvaient être estimées en 2020, selon l'Agence fédérale allemande pour les sciences de la Terre et les matières premières, à , dont 55 % de charbon, 25 % de pétrole et 19 % de gaz naturel. Ces réserves assurent de production au rythme actuel ; cette durée est très variable selon le type d'énergie : pour le pétrole, pour le gaz naturel, pour le charbon. Pour l'uranium, avec les techniques actuelles, elle serait de 90 à selon les estimations, et sa durée d'utilisation pourrait se compter en siècles en ayant recours à la surgénération.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.