Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Bio-inspired roboticsBio-inspired robotic locomotion is a fairly new subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature.
Extended evolutionary synthesisThe extended evolutionary synthesis consists of a set of theoretical concepts argued to be more comprehensive than the earlier modern synthesis of evolutionary biology that took place between 1918 and 1942. The extended evolutionary synthesis was called for in the 1950s by C. H. Waddington, argued for on the basis of punctuated equilibrium by Stephen Jay Gould and Niles Eldredge in the 1980s, and was reconceptualized in 2007 by Massimo Pigliucci and Gerd B. Müller. Notably, Dr.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Univers (probabilités)vignette|Lancé d'une pièce (pile ou face) En théorie des probabilités, un univers, souvent noté , ou , est l'ensemble de toutes les issues (résultats) pouvant être obtenues au cours d'une expérience aléatoire. À chaque élément de l'univers , c'est-à-dire à chacun des résultats possibles de l'expérience considérée, nous pouvons associer le sous-ensemble constitué de cet élément, appelé événement élémentaire. De manière plus générale, toute partie de l'univers est appelée un événement.
Théorie synthétique de l'évolutionvignette|Julian Huxley nomme cette théorie théorie synthétique en 1942 (image 1922). La (ou TSE) est une théorie darwinienne de l'évolution basée sur la sélection naturelle de variations aléatoires du génome. Elle est aussi appelée synthèse néodarwinienne, théorie néodarwinienne de l'évolution ou plus simplement néodarwinisme. Cette théorie est une synthèse de diverses théories biologiques du et du début du , dont les lois de Mendel, la génétique des populations et la sélection naturelle.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Sinus hyperbolique réciproqueLe sinus hyperbolique réciproque est, en mathématiques, une fonction hyperbolique. La fonction sinus hyperbolique réciproque, ou argument sinus hyperbolique, notée arsinh (ou argsh), est définie à l'aide du sinus hyperbolique par : Cette fonction est bijective et son est . Elle est continue, impaire, strictement croissante, convexe sur et concave sur . Sa en 0 est 0 et sa limite en +∞ est +∞. Elle est dérivable sur et sa dérivée est donnée par : Par conséquent : la fonction arsinh s'exprime à l'aide du log
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.