Bed Topography Inference from Velocity Field Using Deep Learning.
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
Poor decisions and selfish behaviors give rise to seemingly intractable global problems, such as the lack of transparency in democratic processes, the spread of conspiracy theories, and the rise in greenhouse gas emissions. However, people are more predict ...
Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered a ...
Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these ina ...
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) ...
An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained ...
DeepImageJ offers a user-friendly solution in ImageJ to run trained deep learning models for biomedical image analysis. It includes guiding tools for reliable analyses, contributing to the democratization of deep learning in microscopy. DeepImageJ is a use ...
Peoples’ recreation and well-being are closely related to their aesthetic enjoyment of the landscape. Ecosystem service (ES) assessments record the aesthetic contributions of landscapes to peoples’ well-being in support of sustainable policy goals. However ...
Driven by massive amounts of data and important advances in computational resources, new deep learning systems have achieved outstanding results in a large spectrum of applications. Nevertheless, our current theoretical understanding on the mathematical fo ...