Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Dielectric Elastomer Actuators (DEAs) enable the realization of energy-efficient and compact actuator systems. DEAs operate at the kilovolt range with typically microampere-level currents and hence minimize thermal losses in comparison to low voltage/high current actuators such as shape memory alloys or solenoids. The main limiting factor for reaching high energy density in high voltage applications is dielectric breakdown. In previous investigations on silicone-based thin films, we reported that not only do environmental conditions and film parameters such as pre-stretch play an important role but that electrode composition also has a significant impact on the breakdown behavior. In this paper, we present a comprehensive study of electrical breakdown on thin silicone films coated with electrodes manufactured by five different methods: screen printing, inkjet printing, pad printing, gold sputtering, and nickel sputtering. For each method, breakdown was studied under environmental conditions ranging from 1 degrees C to 80 degrees C and 10% to 90% relative humidity. The effect of different manufacturing methods was analyzed as was the influence of parameters such as solvents, silicone content, and the particle processing method. The breakdown field increases with increasing temperature and decreases with increasing humidity for all electrode types. The stiffer metal electrodes have a higher breakdown field than the carbon-based electrodes, for which particle size also plays a large role.
Yves Perriard, Yoan René Cyrille Civet, Thomas Guillaume Martinez, Stefania Maria Aliki Konstantinidi, Armando Matthieu Walter, Simon Holzer