Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Liste de concepts logiquesCet article liste les principaux concepts logiques, au sens philosophique du terme, c'est-à-dire en logique générale (issue de la dialectique). Nota : La logique comporte aussi des branches en mathématiques et en informatique. Ces branches de la logique utilisent des concepts souvent différents comme les prédicats : axiome, théorème hypothèse, conjonction, disjonction, Déduction naturelle... Pour plus d'informations sur ces concepts consulter les articles : Logique mathématique, logique classique.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Reasoning systemIn information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems. By the everyday usage definition of the phrase, all computer systems are reasoning systems in that they all automate some type of logic or decision.
Logique non monotoneUne logique non-monotone est une logique formelle dans laquelle la base de faits inférés peut ne pas croître et même parfois décroître. En effet, la plupart des logiques formelles sont monotones, ce qui signifie qu'ajouter un fait ou un axiome à un ensemble de faits ou d'axiomes n'enlève pas de faits à cet ensemble. Autrement dit, cela signifie qu'ajouter une nouvelle connaissance à un système ne fera qu'augmenter les faits inférés dans ce système.
Modèle de fondationUn modèle de fondation est un modèle d'intelligence artificielle de grande taille, entraîné sur une grande quantité de données non étiquetées (généralement par apprentissage auto-supervisé ). Le modèle résultant peut être adapté à un large éventail de tâches en aval (downstream tasks en anglais). Depuis leur introduction en 2018, les modèles de fondation ont induit une transformation majeure dans la manière de construire les systèmes d'IA. Les premiers modèles de fondation étaient de grands modèles de langage pré-entraînés, notamment BERT et GPT-3.
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.