Pion (particule)Un pion ou méson pi est une des trois particules : π, π+ ou π−. Ce sont les particules les plus légères de la famille des mésons. Elles jouent un rôle important dans l'explication des propriétés à basse énergie de la force nucléaire forte ; notamment, la cohésion du noyau atomique est assurée par l'échange de pions entre les nucléons (protons et neutrons). Le substantif masculin pion (prononcé en français standard) est composé de pi, transcription de la lettre grecque π, et de -on, tiré de électron.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
KaonUn kaon est une particule (notée K) de la famille des mésons caractérisée par un nombre quantique appelé étrangeté et noté S. Les mésons étant constitués d'un nombre pair de quarks et d'antiquarks, les kaons contiennent un quark s ou un antiquark s combiné avec un quark/antiquark parmi u ou d (resp. u ou d).
Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Interaction élémentaireQuatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Potentiel de YukawaUn potentiel de Yukawa (appelé également 'potentiel de Coulomb écranté') est un potentiel de la forme Hideki Yukawa montra dans les années 1930 qu'un tel potentiel provient de l'échange d'un champ scalaire massif tel que celui d'un pion de masse . La particule médiatrice du champ possédant une masse, la force correspondante a une portée inversement proportionnelle à sa masse. Pour une masse nulle, le potentiel de Yukawa devient équivalent à un potentiel coulombien, et sa portée est considérée comme infinie.
Force nucléaireLa force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.
MésonUn méson est, en physique des particules, une particule composite (c’est-à-dire non élémentaire) composée d'un nombre pair de quarks et d'antiquarks. Le terme « méson » vient du grec , meson, qui signifie « le milieu, la juste mesure ». Les mésons sont des hadrons possédant un spin entier, et donc appartiennent à la famille des bosons. Dans le modèle standard, les mésons sont des composés d'un nombre pair de quarks et d'antiquarks. Tous les mésons sont instables et possèdent une durée de vie moyenne très courte.