Exploration spatialevignette|Les premiers pas d'humains sur la Lune : Buzz Aldrin photographié par Neil Armstrong sur la surface lunaire le pour la mission Apollo 11. L'exploration spatiale est l'ensemble des activités qui sont réalisées dans l'espace. Elles reposent sur des techniques spécifiques relevant de l'astronautique qui permettent la réalisation de lanceurs, de satellites, de sondes spatiales, d'équipements et d'instruments spécifiques. L'exploration de l'espace remplit des objectifs scientifiques, économiques, ou militaires.
Clé de chiffrementUne clé est un paramètre utilisé en entrée d'une opération cryptographique (chiffrement, déchiffrement, scellement, signature numérique, vérification de signature). Une clé de chiffrement peut être symétrique (cryptographie symétrique) ou asymétrique (cryptographie asymétrique). Dans le premier cas, la même clé sert à chiffrer et à déchiffrer. Dans le second cas on utilise deux clés différentes, la clé publique est utilisée au chiffrement alors que celle servant au déchiffrement est gardée secrète : la clé secrète, ou clé privée, et ne peut pas se déduire de la clé publique.
Space advocacySpace advocacy is supporting or advocating for a human use of outer space. Purposes advocated can reach from space exploration, or commercial use of space to even space settlement. There are many different individuals and organizations dedicated to space advocacy. They are usually active in educating the public on space related subjects, lobbying governments for increased funding in space-related activities or supporting private space activities. They also recruit members, fund projects, and provide information for their membership and interested visitors.
Apollonios de PergaApollonios de Perga ou Apollonius de Perge (en grec ancien / Apollốnios o Pergaíos), né dans la seconde moitié du (probablement autour de ), disparu au début du est un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie), mais a vécu à Alexandrie. Il est considéré comme l'une des grandes figures des mathématiques hellénistiques et a exercé une influence importante sur les développements de l'analyse au . Apollonius serait né à Perge autour de 240 .
Congruence (géométrie)En géométrie euclidienne, la congruence est une relation sur l'ensemble des parties de l'espace considéré : deux ensembles de points sont dits si l'un est l' de l'autre par une isométrie (une bijection qui conserve les distances). De manière moins formelle, deux figures sont congruentes si elles ont la même forme et la même taille, mais ont des positions respectives différentes. La congruence est une relation d'équivalence plus fine que la similitude : par exemple, deux triangles isométriques sont toujours semblables.
HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Calcul tensorielEn physique théorique, des équations différentielles, posées en termes de champs tensoriels, sont une manière très générale pour exprimer les relations à la fois géométriques par nature et liées au calcul différentiel. Pour formuler de telles équations, il faut connaître la dérivée covariante. Cela permet d'exprimer la variation d'un champ tensoriel le long d'un champ vectoriel. La notion d'origine du calcul différentiel absolu, plus tard renommé calcul tensoriel, amena à l'isolation du concept géométrique de connexion.