DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Gestion des donnéesLa gestion des données est une discipline de gestion qui tend à valoriser les données en tant que ressources numériques. La gestion des données permet d'envisager le développement d'architectures, de réglementations, de pratiques et de procédures qui gèrent correctement les besoins des organismes sur le plan de tout le cycle de vie des données. Les données sont, avec les traitements, l'un des deux aspects des systèmes d'information traditionnellement identifiés, et l'un ne peut aller sans l'autre pour un management du système d'information cohérent.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Stress chez l'humainLe 'stress chez l'humain' qualifie à la fois une situation contraignante et les processus physiologiques mis en place par l'organisme pour s'y adapter. Chez l'adulte, le stress peut avoir des origines physiques, pathogéniques (ayant une maladie génétique, infectieuse ou parasitaire comme origine par exemple), socio-psychiques, médiées par divers processus hormonaux (hormones, ou molécules de stress), chimiques et biochimiques de l'organisme.
ConnaissanceLa connaissance est une notion aux sens multiples, à la fois utilisée dans le langage courant et objet d'étude poussée de la part des sciences cognitives et des philosophes contemporains. Les connaissances, leur nature et leur variété, la façon dont elles sont acquises, leur processus d'acquisition, leur valeur et leur rôle dans les sociétés humaines, sont étudiés par une diversité de disciplines, notamment la philosophie, l'épistémologie, la psychologie, les sciences cognitives, l'anthropologie et la sociologie.
Exploratory data analysisIn statistics, exploratory data analysis (EDA) is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling and thereby contrasts traditional hypothesis testing. Exploratory data analysis has been promoted by John Tukey since 1970 to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.
Data dredgingvignette|Exemple de Data dredging. Le data dredging (littéralement le dragage de données mais mieux traduit comme étant du triturage de données) est une technique statistique qui . Une des formes du data dredging est de partir de données ayant un grand nombre de variables et un grand nombre de résultats, et de choisir les associations qui sont « statistiquement significatives », au sens de la valeur p (on parle aussi de p-hacking).
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Testing hypotheses suggested by the dataIn statistics, hypotheses suggested by a given dataset, when tested with the same dataset that suggested them, are likely to be accepted even when they are not true. This is because circular reasoning (double dipping) would be involved: something seems true in the limited data set; therefore we hypothesize that it is true in general; therefore we wrongly test it on the same, limited data set, which seems to confirm that it is true.