Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging
Publications associées (42)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In crowding, the perception of a target deteriorates in the presence of clutter. Crowding is usually explained within the framework of object recognition, where processing proceeds in a hierarchical and feedforward fashion from the analysis of low level fe ...
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...
Human brains can deal with sequences with temporal dependencies on a broad range of timescales, many of which are several order of magnitude longer than neuronal timescales. Here we introduce an artificial intelligence that learns and produces the complex ...
Human motion prediction, i.e., forecasting future body poses given observed pose sequence, has typically been tackled with recurrent neural networks (RNNs). However, as evidenced by prior work, the resulted RNN models suffer from prediction errors accumula ...
Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collision ...
The goal of the scene labeling task is to assign a class label to each pixel in an image. To ensure a good visual coherence and a high class accu- racy, it is essential for a model to capture long range (pixel) label dependencies in images. In a feed-forwa ...
Humans are able to learn and compose complex, yet beautiful, pieces of music as seen in e.g. the highly complicated works of J.S. Bach. However, how our brain is able to store and produce these very long temporal sequences is still an open question. Long s ...
Motivated by concerns for user privacy, we design a steganographic system ("stegosystem") that enables two users to exchange encrypted messages without an adversary detecting that such an exchange is taking place. We propose a new linguistic stegosystem ba ...
In this work, we study the use of attention mechanisms to enhance the performance of the state-of-the-art deep learning model in Speech Emotion Recognition (SER). We introduce a new Long Short-Term Memory (LSTM)-based neural network attention model which i ...
In this paper, we evaluate the results of using inter and intra attention mechanisms from two architectures, a Deep Attention Long Short-Term Memory-Network (LSTM-N) (Cheng et al., 2016) and a Decomposable Attention model (Parikh et al., 2016), for anaphor ...