Proof (truth)A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.
Ring learning with errorsIn post-quantum cryptography, ring learning with errors (RLWE) is a computational problem which serves as the foundation of new cryptographic algorithms, such as NewHope, designed to protect against cryptanalysis by quantum computers and also to provide the basis for homomorphic encryption. Public-key cryptography relies on construction of mathematical problems that are believed to be hard to solve if no further information is available, but are easy to solve if some information used in the problem construction is known.
Pseudorandom permutationIn cryptography, a pseudorandom permutation (PRP) is a function that cannot be distinguished from a random permutation (that is, a permutation selected at random with uniform probability, from the family of all permutations on the function's domain) with practical effort. Let F be a mapping . F is a PRP if and only if For any , is a bijection from to , where . For any , there is an "efficient" algorithm to evaluate for any ,.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Méthode des tableauxvignette|200px|Représentation graphique d'un tableau propositionnel partiellement construit En théorie de la démonstration, les tableaux sémantiques sont une méthode de résolution du problème de la décision pour le calcul des propositions et les logiques apparentées, ainsi qu'une méthode de preuve pour la logique du premier ordre. La méthode des tableaux peut également déterminer la satisfiabilité des ensembles finis de formules de diverses logiques. C'est la méthode de preuve la plus populaire pour les logiques modales (Girle 2000).