Fine motor skillFine motor skill (or dexterity) is the coordination of small muscles in movement with the eyes, hands and fingers. The complex levels of manual dexterity that humans exhibit can be related to the nervous system. Fine motor skills aid in the growth of intelligence and develop continuously throughout the stages of human development. Motor skills are movements and actions of the bone structures. Typically, they are categorised into two groups: gross motor skills and fine motor skills.
Motor skillA motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together. The goal of motor skill is to optimize the ability to perform the skill at the rate of success, precision, and to reduce the energy consumption required for performance. Performance is an act of executing a motor skill or task.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Théorie des ensembles de Zermelo-Fraenkelvignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Construction des entiers naturelsIl existe plusieurs méthodes classiques de construction des entiers naturels, mais on utilise aujourd’hui le plus souvent celle due à von Neumann . Dans la théorie des ensembles, on définit les entiers par récurrence, en construisant explicitement une suite d'ensembles à partir de l'ensemble vide (la théorie des ensembles postule qu'il existe au minimum un tel ensemble vide).
Degrees of freedom problemIn neuroscience and motor control , the degrees of freedom problem or motor equivalence problem states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem (or task) and a motor solution to the problem.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Théorie des ensembles non bien fondésLa théorie des ensembles non bien fondés est une variante de la théorie axiomatique des ensembles qui permet aux ensembles de s'appartenir les uns aux autres sans limite. Autrement dit, c'est une théorie des ensembles qui ne satisfait pas l'axiome de fondation. Plus précisément, dans la théorie des ensembles non bien fondés, l'axiome de fondation de ZFC est remplacé par un axiome impliquant sa négation.
Chirurgie digestivevignette|Opération de chirurgie La chirurgie digestive concerne les interventions réalisées sur l'appareil digestif ciblant l'œsophage, l'estomac, le duodénum, l'intestin grêle, le côlon et le rectum. Le chirurgien digestif réalise aussi des interventions sur les voies biliaires et la vésicule biliaire, le foie, le pancréas, la rate et sur la paroi abdominale, au même titre que la chirurgie de la hernie inguinale, ce qui explique l'intitulé chirurgie viscérale et digestive, le plus fréquemment utilisé en France.