Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Redresseur (réseaux neuronaux)vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.