Randomness testA randomness test (or test for randomness), in data evaluation, is a test used to analyze the distribution of a set of data to see whether it can be described as random (patternless). In stochastic modeling, as in some computer simulations, the hoped-for randomness of potential input data can be verified, by a formal test for randomness, to show that the data are valid for use in simulation runs. In some cases, data reveals an obvious non-random pattern, as with so-called "runs in the data" (such as expecting random 0–9 but finding "4 3 2 1 0 4 3 2 1.
Interaction homme-robotLes interactions humain-robot (Human-Robot Interactions en anglais, ) sont le sujet d'un champ de recherches ayant émergé du contact et de la rencontre entre l'humain et les systèmes robotiques. Il s'agit d'un champ de recherches interdisciplinaires à la frontière entre la robotique, l'ergonomie et la psychologie. Formé par l’assemblage des deux mots « inter » et « action », le terme d’interaction, dans son étymologie même, suggère l’idée d’une action mutuelle, en réciprocité, de plusieurs éléments.
Robot articuléthumb|right|Un robot articulé KUKA thumb|right|Un robot articulé KUKA (2) thumb|right|Un robot articulé KUKA (3) Un robot articulé est un robot avec des axes rotatifs. Il est alimenté par une variété de moyens, y compris les moteurs électriques. Certains types de robots, comme les bras, peuvent être articulés ou non-articulés. Les robots articulés sont très utilisés dans le domaine de l'industrie. Ils permettent de réaliser du soudage, de l'assemblage et de la peinture.
Statistical randomnessA numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice roll or the digits of π exhibit statistical randomness. Statistical randomness does not necessarily imply "true" randomness, i.e., objective unpredictability. Pseudorandomness is sufficient for many uses, such as statistics, hence the name statistical randomness. Global randomness and local randomness are different.
Cerebellar model articulation controllerThe cerebellar model arithmetic computer (CMAC) is a type of neural network based on a model of the mammalian cerebellum. It is also known as the cerebellar model articulation controller. It is a type of associative memory. The CMAC was first proposed as a function modeler for robotic controllers by James Albus in 1975 (hence the name), but has been extensively used in reinforcement learning and also as for automated classification in the machine learning community. The CMAC is an extension of the perceptron model.