Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Locomotion robotiqueLa locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.
Bio-inspired roboticsBio-inspired robotic locomotion is a fairly new subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
NAO (robotique)NAO est un robot humanoïde français, autonome et programmable, initialement développé par la société Aldebaran Robotics, une start-up française située à Paris, rachetée par le groupe japonais SoftBank Groupe en 2015 qui la renomme en SoftBank Robotics. Le , Nao remplace le chien robot Aibo de Sony en tant que robot utilisé dans la RoboCup Standard Platform League (SPL), une compétition internationale de robots joueurs de football. Nao a été utilisé dans la RoboCup 2008 et 2009, et le NaoV3R a été choisi comme plate-forme pour le SPL à la RoboCup 2010.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Robotique en essaimLa robotique en essaim est une branche de la robotique appliquant les méthodes d'intelligence distribuée aux systèmes à plusieurs robots. Il s'agit généralement d'utiliser des robots simples, voire simplistes, et peu coûteux, d'un intérêt individuel assez limité, mais qui ensemble (par exemple via des capacités d'autoassemblage ou d'auto-organisation) forment un système complexe et robuste. La robotique en essaim cherche à étudier la conception et le comportement des robots.
Data collectionData collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, and business. While methods vary by discipline, the emphasis on ensuring accurate and honest collection remains the same.