Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Value-at-Risk (VaR) of a state function along SDE state distributions. The VaR problem is upper-bounded by an infinite-dimensional Second-Order Cone Program in occupation measures through the use of one-sided Cantelli or Vysochanskii-Petunin inequalities. These upper bounds on the true quantile statistics may be approximated from above by a sequence of Semidefinite Programs in increasing size using the moment-Sum-of-Squares hierarchy when all data is polynomial. Effectiveness of this approach is demonstrated on example stochastic polynomial dynamical systems.
Fabio Nobile, Sundar Subramaniam Ganesh
Victor Panaretos, Neda Mohammadi Jouzdani