Résumé
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables. Dans la suite de l'article, le terme équation différentielle est utilisé pour signifier équation différentielle ordinaire. L'ordre d'une équation différentielle correspond au degré maximal de dérivation auquel l'une des fonctions inconnues a été soumise. Il existe une forme de référence à laquelle on essaie de ramener les équations différentielles ordinaires par divers procédés mathématiques : équation d'ordre 1 où X est la fonction inconnue, et t sa variable. Les équations différentielles représentent un objet d'étude de toute première importance, aussi bien en mathématiques pures qu'en mathématiques appliquées. Elles sont utilisées pour construire des modèles mathématiques de processus d'évolution physiques et biologiques, par exemple pour l'étude de la radioactivité, la mécanique céleste ou la dynamique des populations... La variable t représente alors souvent le temps, même si d'autres choix de modélisation sont possibles. Les objectifs principaux de la théorie des équations ordinaires sont la résolution explicite complète quand elle est possible, la résolution approchée par des procédés d'analyse numérique, ou encore l'étude qualitative des solutions. Ce dernier domaine s'est progressivement étoffé, et constitue l'un des composants principaux d'une vaste branche des mathématiques contemporaines : l'étude des systèmes dynamiques. Même si ce n'est pas la discipline qui a fait naître les équations différentielles, la dynamique des populations en illustre de façon simple des exemples parmi les plus accessibles.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.