Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Sélection négative (sélection naturelle)Dans la sélection naturelle, la sélection négative ou la sélection purifiante est l'élimination sélective des allèles délétères. Cela peut stabiliser la sélection par la purge des polymorphismes génétiques délétères qui résultent de mutations aléatoires. La purge des allèles délétères peut être réalisée au niveau de la génétique des populations, ne nécessitant pas plus d'une seule mutation ponctuelle comme l'unité de sélection.
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Génétique des populationsLa génétique des populations (GDP) est l'étude de la distribution et des changements de la fréquence des versions d'un gène (allèles) dans les populations d'êtres vivants, sous l'influence des « pressions évolutives » (sélection naturelle, dérive génétique, recombinaison, mutation, et migration). Les changements de fréquence des allèles sont un aspect majeur de l'évolution, la fixation de certains allèles conduit à une modification génétique de la population, et l'accumulation de tels changements dans différentes populations peut conduire au processus de spéciation.
Théorie neutraliste de l'évolutionLa , aussi appelée « théorie de la mutation et de la dérive aléatoire », est une théorie de l'évolution moléculaire selon laquelle la plupart des mutations sont neutres et ont une influence négligeable sur la valeur sélective. Elle explique la diversité génétique par la dérive génétique principalement, et ne donne qu'un rôle ponctuel à la sélection naturelle, sans contester cependant la prépondérance de celle-ci du point de vue de l'évolution morphologique.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Background selectionBackground selection describes the loss of genetic diversity at a non-deleterious locus due to negative selection against linked deleterious alleles. It is one form of linked selection, where the maintenance or removal of an allele from a population is dependent upon the alleles in its linkage group. The name emphasizes the fact that the genetic background, or genomic environment, of a neutral mutation has a significant impact on whether it will be preserved (genetic hitchhiking) or purged (background selection) from a population.