Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Diffraction de poudrevignette|320x320px|Paterne de poudre d'électron (rouge) d'un film d'aluminium avec une superposition de spirales (vert) et une ligne d'intersection (bleue) qui détermine le paramètre de réseau. La diffraction de poudre est une technique scientifique utilisant la diffraction aux rayons X, la diffraction de neutrons ou la diffraction des électrons sur des échantillons en poudre ou micro-cristallins pour la caractérisation structurale de matériaux. L'instrument dédié à l'exécution de ces mesures est appelé un diffractomètre de poudre.
TalcLe talc est une espèce minérale composée de silicate de magnésium doublement hydroxylé de formule MgSiO(OH), pouvant contenir des traces de nickel, de fer, d'aluminium, de calcium, de sodium et d'autres silicates magnésiens comme l'amiante. Georgius Agricola décrit ce minéral en 1546, mais il est connu depuis l’antiquité. Son nom vient du persan : peo. Emprunté à l'arabe talq, le mot aurait été introduit par Bernard Palissy en 1560.
Degré (angle)vignette|Un angle de 45 degrés. Le degré d'angle (ou d'arc), ou simplement degré (symbole : °), est une unité d'angle, définie comme la trois-cent-soixantième partie d'un angle plein (1/360 tour). Un degré est équivalent à π/180 radians. Lorsque cet angle est en rapport avec un méridien de référence, il indique un emplacement le long d'un grand cercle d'une sphère, comme la Terre (voir Coordonnées géographiques), Mars ou la sphère céleste.
OrthonormalityIn linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis. The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces.