Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Psychologie mathématiqueLa psychologie mathématique est une approche de la recherche psychologique basée sur la modélisation mathématique des processus perceptifs, cognitifs et moteurs, et sur l'établissement de règles qui relient les caractéristiques de stimulus quantifiables à un comportement quantifiable. L'approche mathématique est utilisée dans le but de dériver des hypothèses plus exactes et de produire ainsi des validations empiriques plus strictes. Le comportement quantifiable est en pratique souvent constitué par la performance de la tâche.
Théorème de RadonLe théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Torch (machine learning)Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created at IDIAP at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. The core package of Torch is torch. It provides a flexible N-dimensional array or Tensor, which supports basic routines for indexing, slicing, transposing, type-casting, resizing, sharing storage and cloning.
RigourRigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.