Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Cartographie en ligneLa cartographie en ligne (en anglais : web mapping ou webmapping) est la forme de la cartographie numérique qui fait usage d'Internet pour pouvoir produire, concevoir, traiter et publier des cartes géographiques. Elle repose sur les services Web dans la logique du cloud computing. Avec le Web 2.0, de nombreux services Web cartographiques sont apparus (cf palette en fin d'article). Certains sont « propriétaires », tels que Google Maps, Google Earth, Bing Maps, etc. D'autres sont fondés sur des démarches coopératives libres, tel que OpenStreetMap.
Automorphisme de graphevignette|On peut définir deux automorphismes sur le graphe maison : l'identité et la permutation qui échange les deux « murs » de la « maison ». En mathématiques et en particulier en théorie des graphes, un automorphisme de graphe est une bijection de l'ensemble des sommets vers lui-même qui préserve l'ensemble des arêtes. On peut voir l'automorphisme de graphes comme un isomorphisme de graphes du graphe dans lui-même. On peut en général s'arranger pour mettre en évidence visuellement les automorphismes de graphes sous forme de symétries dans le tracé du graphe.
Graphe complémentaireframe|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Implicit graphIn the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function. The notion of an implicit graph is common in various search algorithms which are described in terms of graphs. In this context, an implicit graph may be defined as a set of rules to define all neighbors for any specified vertex.
Graphe de flot de contrôleEn informatique, un graphe de flot de contrôle (abrégé en GFC, control flow graph ou CFG en anglais) est une représentation sous forme de graphe de tous les chemins qui peuvent être suivis par un programme durant son exécution. Dans un GFC, les sommets du graphe représentent un bloc de base, c'est-à-dire un bout de code d'un seul tenant sans sauts ni cibles de sauts. Les cibles de sauts marquent le début d'un bloc de base, tandis que les sauts en marquent la fin. Les arcs représentent les sauts dans le flot de contrôle.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Data-flow analysisData-flow analysis is a technique for gathering information about the possible set of values calculated at various points in a computer program. A program's control-flow graph (CFG) is used to determine those parts of a program to which a particular value assigned to a variable might propagate. The information gathered is often used by compilers when optimizing a program. A canonical example of a data-flow analysis is reaching definitions.
Field-programmable gate arrayA field-programmable gate array (FPGA) is an integrated circuit designed to be configured after manufacturing. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools. FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable interconnects allowing blocks to be wired together.