Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Base de données orientée objetEn informatique, une base de données à objets (anglais object database) est un stock d'informations groupées sous forme de collections d'objets persistants. Une base de données est un ensemble d'informations connexes stockées dans un dispositif informatique. Dans une base de données à objets les informations sont regroupées sous forme d'objets : un conteneur logique qui englobe des informations et des traitements relatifs à une chose du monde réel.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Programmation orientée objetLa programmation orientée objet (POO), ou programmation par objet, est un paradigme de programmation informatique. Elle consiste en la définition et l'interaction de briques logicielles appelées objets ; un objet représente un concept, une idée ou toute entité du monde physique, comme une voiture, une personne ou encore une page d'un livre. Il possède une structure interne et un comportement, et il sait interagir avec ses pairs.
Objet (informatique)En informatique, un objet est un conteneur symbolique et autonome qui contient des informations et des mécanismes concernant un sujet, manipulés dans un programme. Le sujet est souvent quelque chose de tangible appartenant au monde réel. C'est le concept central de la programmation orientée objet (POO). En programmation orientée objet, un objet est créé à partir d'un modèle appelé classe ou prototype, dont il hérite les comportements et les caractéristiques.
DenormalizationDenormalization is a strategy used on a previously-normalized database to increase performance. In computing, denormalization is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data. It is often motivated by performance or scalability in relational database software needing to carry out very large numbers of read operations.
Object modelIn computing, object model has two related but distinct meanings: The properties of objects in general in a specific computer programming language, technology, notation or methodology that uses them. Examples are the object models of Java, the Component Object Model (COM), or Object-Modeling Technique (OMT). Such object models are usually defined using concepts such as class, generic function, message, inheritance, polymorphism, and encapsulation.
Forme normale (bases de données relationnelles)Dans une base de données relationnelle, une forme normale désigne un type de relation particulier entre les entités. La normalisation consiste à restructurer une base de données pour respecter certaines formes normales, afin d'éviter la redondance des données (des données apparaissent plusieurs fois) et d'assurer l'intégrité des données. Le but essentiel de la normalisation est d’éviter les anomalies transactionnelles pouvant découler d’une mauvaise modélisation des données et ainsi éviter un certain nombre de problèmes potentiels tels que les anomalies de lecture, les anomalies d’écriture, la redondance des données et la contre-performance.
Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Modèle de donnéesEn informatique, un modèle de données est un modèle qui décrit la manière dont sont représentées les données dans une organisation métier, un système d'information ou une base de données. Le terme modèle de données peut avoir deux significations : Un modèle de données théorique, c'est-à-dire une description formelle ou un modèle mathématique. Voir aussi modèle de base de données Un modèle de données instance, c'est-à-dire qui applique un modèle de données théorique (modélisation des données) pour créer un modèle de données instance.