Analyse constructiveL'analyse constructive est une branche des mathématiques constructives. Elle critique l'analyse mathématique classique et vise à fonder l'analyse sur des principes constructifs. Elle s'inscrit dans le courant de pensée constructiviste ou intuitionniste, dont les principaux membres ont été Kronecker, Brouwer ou Weyl. La critique porte sur la façon dont est utilisée la notion d'existence, de disjonction et sur l'utilisation du raisonnement par l'absurde.
Tangent vectorIn mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .
AutocovarianceLa fonction d'autocovariance d'un processus stochastique permet de caractériser les dépendances linéaires existant au sein de ce processus. Si est un processus stationnaire au sens faible alors et pour n'importe quels entiers naturels . Dans ce cas et il suffit alors de définir les autocovariances par la fonction qui à tout associe . La fonction d'autocovariance apparaît alors comme la covariance de ce processus avec une version décalée de lui-même. On appelle l'autocovariance d'ordre .
Inégalité arithmético-géométriquethumb|right|Preuve sans mots de l'inégalité arithmético-géométrique en deux dimensions : PR est un diamètre d'un cercle de centre O ; son rayon AO a donc pour longueur la moyenne arithmétique de a et b. Par le théorème de la moyenne géométrique, on trouve aussi que la hauteur GQ a pour longueur la moyenne géométrique de a et b. On a donc bien pour tous a:b, AO ≥ GQ. En mathématiques, l'inégalité arithmético-géométrique (IAG) établit un lien entre la moyenne arithmétique et la moyenne géométrique.
Vampire (theorem prover)Vampire is an automatic theorem prover for first-order classical logic developed in the Department of Computer Science at the University of Manchester. Up to Version 3, it was developed by Andrei Voronkov together with Kryštof Hoder and previously with Alexandre Riazanov. Since Version 4, the development has involved a wider international team including Laura Kovacs, Giles Reger, and Martin Suda. Since 1999 it has won at least 53 trophies in the CADE ATP System Competition, the "world cup for theorem provers", including the most prestigious FOF division and the theory-reasoning TFA division.