Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Conservation de l'énergieLa conservation de l'énergie est un principe physique, selon lequel l'énergie totale d'un système isolé est invariante au cours du temps. Ce principe, largement vérifié expérimentalement, est de première importance en physique, et impose que pour tout phénomène physique l'énergie totale initiale du système isolé soit égale à l'énergie totale finale, donc que de l'énergie passe d'une forme à une autre durant le déroulement du phénomène, sans création ni disparition d'énergie.
Congruence (variété différentielle)En relativité générale, le terme de congruence désigne un ensemble de courbes ne s'intersectant pas, susceptibles de représenter un flot géodésique de particules se déplaçant sur une variété différentielle. Dans un ouvert O d'une variété différentielle M, une congruence sur O est une famille de courbes telles que par tout point p de O il passe une et une seule courbe de la famille. Du fait de la définition, on peut associer à une congruence un champ de vecteurs sur O défini comme étant les tangentes des courbes prises au point considéré.
Algebraic quantum field theoryAlgebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Let be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net of von Neumann algebras on a common Hilbert space satisfying the following axioms: Isotony: implies .