DopamineLa dopamine (DA) est un neurotransmetteur, une molécule biochimique qui permet la communication au sein du système nerveux, et l'une de celles qui influent directement sur le comportement. La dopamine renforce les actions habituellement bénéfiques telles que manger un aliment sain en provoquant la sensation de plaisir ce qui active ainsi le système de récompense/renforcement. Elle est donc indispensable à la survie de l'individu. Plus généralement, elle joue un rôle dans la motivation et la prise de risque chez les mammifères, donc chez l'être humain aussi.
Récepteur dopaminergiquevignette|Il s'agit d'une illustration d'un neurone dopaminergique avec TAAR1 co-localisé et les effets d'un agoniste TAAR1 (amphétamine ou une amine trace) sur la recapture et l'efflux de dopamine. Ce modèle est basé sur des informations provenant des trois sources suivantes : Offermanns, Stefan ; (eds.), Walter Rosenthal (2008). Encyclopédie de la pharmacologie moléculaire (2e éd.). Berlin : Springer. pp. 1219-1222. . Miller GM (janvier 2011).
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Hypothèse de la dopamine dans la schizophrénieLhypothèse de la dopamine dans la schizophrénie (ou hypothèse dopaminergique de la schizophrénie) est une théorie selon laquelle la schizophrénie serait la conséquence d'un dérèglement des quantités de dopamine dans le système nerveux ; il s'agit d'un dysfonctionnement du système dopaminergique du cerveau. La dopamine est un neurotransmetteur, par lequel les neurones communiquent.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Système de récompenseLe système de récompense / renforcement aussi appelé système hédonique, est un système fonctionnel fondamental des mammifères, situé dans le cerveau, le long du faisceau médian du télencéphale. Ce système de « récompenses » est indispensable à la survie, car il fournit la motivation nécessaire à la réalisation d'actions ou de comportements adaptés, permettant de préserver l'individu et l'espèce (prise de risque nécessaire à la survie, recherche de nourriture, reproduction, évitement des dangers, etc.).
Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.