Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.
Inquiry-based learningInquiry-based learning (also spelled as enquiry-based learning in British English) is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions.
Pédagogie de projetLa pédagogie de projet est une pratique de pédagogie active qui permet de générer des apprentissages à travers la réalisation d'une production concrète. Le projet peut être individuel (comme un exposé ou une maquette) ou collectif (l'organisation d'une fête, d'un voyage, d'un spectacle). Il est semblable à une En effet, lors de la démarche de projet, l’élève est placé en situation de résolution de problèmes, participant de fait au processus d’apprentissage.
Phenomenon-based learningPhenomenon-based learning (PhBL, PhenoBL or PBL) is a multidisciplinary, constructivist form of learning or pedagogy where students study a topic or concept in a holistic approach instead of in a subject-based approach. PhBL includes both topical learning (also known as topic-based learning or instruction), where the phenomenon studied is a specific topic, event, or fact, and thematic learning (also known as theme-based learning or instruction), where the phenomenon studied is a concept or idea.
Technologies de l'éducationLes technologies de l'éducation (Edtech en anglais, pour Educational technology) désignent l'ensemble des nouvelles technologies permettant de faciliter l’enseignement et l'apprentissage. On parle alors de technologies pédagogiques qui permettent d'apprendre de nouveaux contenus sous une forme ludique, stimulante et innovante. Le terme Edtech, né de la contraction d'« éducation » et de « technologie », est apparu dans la littérature anglophone en 2010. Il est devenu populaire pour désigner les startups qui innovent au service de l'éducation.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Learning management systemEn technologies de l'information et de la communication, un learning management system (LMS) ou learning support system (LSS) est un logiciel qui accompagne et gère un processus d'apprentissage ou un parcours pédagogique. En français, on parle de « plateforme d'apprentissage », « système de gestion de l'apprentissage », « centre de formation virtuel », « plate-forme e-learning », « formation ouverte et à distance » (FOAD) ou « formation en ligne », et, particulièrement au Québec, d'« environnement numérique d'apprentissage » (ENA).
Base de donnéesUne base de données permet de stocker et de retrouver des données structurées, semi-structurées ou des données brutes ou de l'information, souvent en rapport avec un thème ou une activité ; celles-ci peuvent être de natures différentes et plus ou moins reliées entre elles. Leurs données peuvent être stockées sous une forme très structurée (base de données relationnelles par exemple), ou bien sous la forme de données brutes peu structurées (avec les bases de données NoSQL par exemple).
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.