Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Code quantiqueLes codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure.
QubitEn informatique quantique, un qubit ou qu-bit (quantum + bit ; prononcé ), parfois écrit qbit, est un système quantique à deux niveaux, qui représente la plus petite unité de stockage d'information quantique. Ces deux niveaux, notés et selon le formalisme de Dirac, représentent chacun un état de base du qubit et en font donc l'analogue quantique du bit. Grâce à la propriété de superposition quantique, un qubit stocke une information qualitativement différente de celle d'un bit.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Flux qubitIn quantum computing, more specifically in superconducting quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied.
Phase qubitIn quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit. The phase qubit is closely related, yet distinct from, the flux qubit and the charge qubit, which are also quantum bits implemented by superconducting devices.
Charge qubitIn quantum computing, a charge qubit (also known as Cooper-pair box) is a qubit whose basis states are charge states (i.e. states which represent the presence or absence of excess Cooper pairs in the island). In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction (or practically, superconducting tunnel junction) to a superconducting reservoir (see figure). The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction.
Téléportation quantiqueLa téléportation quantique est une technique de transfert d'informations quantiques qui consiste à transférer l’état quantique d’un système vers un autre système similaire et distant, sans avoir besoin de transporter physiquement le système lui-même. En d'autres termes, c'est un moyen de transmettre l'information contenue dans un système quantique à un autre endroit, sans avoir à déplacer le système physique.
Linear optical quantum computingLinear optical quantum computing or linear optics quantum computation (LOQC) is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.
Décohérence quantiqueLa décohérence quantique est une théorie susceptible d'expliquer la transition entre les règles physiques quantiques et les règles physiques classiques telles que nous les connaissons, à un niveau macroscopique. Plus spécifiquement, cette théorie apporte une réponse, considérée comme étant la plus complète à ce jour, au paradoxe du chat de Schrödinger et au problème de la mesure quantique. La théorie de la décohérence a été introduite par H. Dieter Zeh en 1970. Elle a reçu ses premières confirmations expérimentales en 1996.