Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Théorème de convergence dominéeEn mathématiques, et plus précisément en analyse, le théorème de convergence dominée est un des théorèmes principaux de la théorie de l'intégration de Lebesgue. Soit une suite de fonctions continues à valeurs réelles ou complexes sur un intervalle de la droite réelle. On fait les deux hypothèses suivantes : la suite converge simplement vers une fonction ; il existe une fonction continue telle queAlors L'existence d'une fonction intégrable majorant toutes les fonctions f équivaut à l'intégrabilité de la fonction (la plus petite fonction majorant toutes les fonctions f).
Gram matrixIn linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.
Matrices congruentesEn algèbre linéaire, deux matrices carrées A et B (de même taille et à coefficients dans un même corps K) sont dites congruentes si elles représentent la même forme bilinéaire dans deux bases différentes, c'est-à-dire s'il existe une matrice inversible P telle que où P est la transposée de P. La congruence définit une relation d'équivalence sur les matrices carrées de même taille à coefficients dans K. Deux matrices congruentes ont même rang.
Abel's testIn mathematics, Abel's test (also known as Abel's criterion) is a method of testing for the convergence of an infinite series. The test is named after mathematician Niels Henrik Abel. There are two slightly different versions of Abel's test – one is used with series of real numbers, and the other is used with power series in complex analysis. Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions dependent on parameters.