Concept

Matrices congruentes

En algèbre linéaire, deux matrices carrées A et B (de même taille et à coefficients dans un même corps K) sont dites congruentes si elles représentent la même forme bilinéaire dans deux bases différentes, c'est-à-dire s'il existe une matrice inversible P telle que où P est la transposée de P. La congruence définit une relation d'équivalence sur les matrices carrées de même taille à coefficients dans K. Deux matrices congruentes ont même rang. Sur un corps de caractéristique différente de 2, toute matrice symétrique de rang r est congruente à une matrice diagonale à r coefficients non nuls. Toute matrice symétrique réelle est congruente à une matrice diagonale n'ayant que des 0, des 1 et –1 sur la diagonale. Deux matrices symétriques réelles A et B sont congruentes si et seulement si elles ont la même signature.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.