Publication

Robust NAS under adversarial training: benchmark, theory, and beyond

Publications associées (36)

Understanding and Improving Fast Adversarial Training

Nicolas Henri Bernard Flammarion, Maksym Andriushchenko

A recent line of work focused on making adversarial training computationally efficient for deep learning models. In particular, Wong et al. (2020) showed that ℓ∞-adversarial training with fast gradient sign method (FGSM) can fail due to a phenomenon called ...
2020

Deep Generative Models and Applications

Tatjana Chavdarova

Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
EPFL2020

Supplementary Material - AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks

Sabine Süsstrunk, Majed El Helou, Frederike Dümbgen

In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show ...
2020

Evaluating the search phase of neural architecture search

Mathieu Salzmann, Martin Jaggi, Claudiu-Cristian Musat, Kaicheng Yu

Neural Architecture Search (NAS) aims to facilitate the design of deep networks fornew tasks. Existing techniques rely on two stages: searching over the architecture space and validating the best architecture. NAS algorithms are currently compared solely b ...
2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.