Température négativeCertains systèmes quantiques liés à la résonance magnétique nucléaire dans les cristaux ou les gaz ultrafroids possèdent des distributions d'énergie particulières pouvant être entièrement peuplées dans l'état de plus basse énergie (zéro absolu) mais également dans l'état de plus haute énergie. L'expression habituelle donnant la température d'un système à volume constant : (avec la température absolue, l'énergie interne, l'entropie, le volume) conduit donc à une fonction non définie au maximum d'entropie et négative au-delà.
Section efficaceEn physique nucléaire ou en physique des particules, la section efficace est une grandeur physique reliée à la probabilité d'interaction d'une particule pour une réaction donnée. La section efficace étant homogène à une surface, l'unité de section efficace du Système international est le mètre carré. En pratique on utilise souvent le barn, de symbole b : = = , soit la surface d'un carré de dix femtomètres de côté (du même ordre de grandeur que le diamètre d'un noyau atomique).
Independent electron approximationIn condensed matter physics, the independent electron approximation is a simplification used in complex systems, consisting of many electrons, that approximates the electron-electron interaction in crystals as null. It is a requirement for both the free electron model and the nearly-free electron model, where it is used alongside Bloch's theorem. In quantum mechanics, this approximation is often used to simplify a quantum many-body problem into single-particle approximations.
Physique atomiqueLa physique atomique est le champ de la physique qui étudie les atomes en tant que systèmes isolés qui comprennent les électrons et le noyau atomique. Elle se concentre essentiellement sur l'arrangement des électrons autour du noyau et sur la façon dont celui-ci est modifié. Cette définition englobe tant les ions que les atomes électriquement neutres. Puisque « atomique » et « nucléaire » sont utilisés de façon synonyme dans le langage courant, la physique atomique est souvent confondue avec la physique nucléaire.
Relations de MaxwellEn thermodynamique, les relations de Maxwell sont un ensemble de relations entre dérivées partielles de diverses grandeurs obtenues par l'application du théorème de Schwarz aux potentiels thermodynamiques. Elles portent le nom de James Clerk Maxwell qui les publia en 1871. Pour un système entièrement décrit par les grandeurs pression , température , entropie et volume , on retient généralement un ensemble de quatre relations relatives à l'énergie interne, à l'enthalpie, à l'énergie libre et à l'enthalpie libre : Néanmoins les relations de Maxwell sont généralisables à tous les systèmes thermodynamiques notamment chimiques, électriques et électrochimiques.
Relative atomic massRelative atomic mass (symbol: A_r; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant (symbol: m_u) is defined as being 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless.
Modèle atomique de RutherfordLe modèle atomique de Rutherford est un modèle physique proposé en 1911 par Ernest Rutherford pour décrire la structure d'un atome. Ce modèle fait suite au modèle atomique de Thomson (ou « modèle du plum pudding »), proposé en 1904 par Joseph John Thomson (dont Rutherford était l'élève), et qui fut invalidé à la suite de l'expérience de Rutherford ou « expérience de la feuille d'or » en 1909.
Fusion magnéto-inertielleLa fusion magnéto-inertielle (de l'anglais : Magneto-inertial fusion, ou MIF) décrit une classe de dispositifs de fusion qui combinent des aspects de la fusion par confinement magnétique et de la fusion par confinement inertiel dans le but de réduire les coûts des dispositifs produisant de l'énergie. La MIF utilise des champs magnétiques pour confiner un plasma initial chaud et de faible densité, puis comprime ce plasma pour l'amener dans des conditions de fusion à l'aide d'un pilote impulsif ou « revêtement ».
Densité numériqueEn physique, chimie et pétrologie, la densité numérique, également appelée nombre volumique ou densité particulaire, est le nombre d'objets (molécules, particules, galaxies) par unité de volume : où : n représente la densité numérique, à ne pas confondre avec la quantité de matière, aussi notée n, N le nombre total d'entités considéré, V le volume occupé par ces entités. Dans le Système international d'unités, la densité numérique s'exprime comme un nombre par mètre cube (unité : m).
Rayon de Bohrvignette|Image reprenant le modèle de Bohr. Dans le modèle de Bohr de l'atome d'hydrogène, le rayon de Bohr est la longueur caractéristique séparant l'électron du proton. C'est donc un ordre de grandeur du rayon des atomes. On retrouve ce rayon de Bohr également par l'approche quantique de la description de l'atome, où il représente la valeur moyenne dans le temps de la distance entre l'électron et le proton. L'éponyme du rayon de Bohr est le physicien danois Niels Bohr (-).