Self-assembly of nanoparticlesNanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy.
Auto-assemblage moléculairedroite|400px|thumb|Un exemple de molécules se liant par liaisons d'hydrogène. L'auto-assemblage moléculaire est le processus par lequel des molécules soi-montant adoptent un agencement sans la direction d'une source extérieure. En général, le terme fait référence à l'auto-assemblage intermoléculaire alors que l'auto-assemblage intramoléculaire prend plus communément le nom de pliage ou de repliement dans le cas de protéines.
Microscope électroniquethumb|Microscope électronique construit par Ernst Ruska en 1933.thumb|Collection de microscopes électroniques anciens (National Museum of Health & Medicine). Un microscope électronique (ME) est un type de microscope qui utilise un faisceau d'électrons pour illuminer un échantillon et en créer une très agrandie. Il est inventé en 1931 par des ingénieurs allemands. Les microscopes électroniques ont un pouvoir de résolution supérieur aux microscopes optiques qui utilisent des rayonnements électromagnétiques visibles.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Self-replicationSelf-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Biological viruses can replicate, but only by commandeering the reproductive machinery of cells through a process of infection. Harmful prion proteins can replicate by converting normal proteins into rogue forms.
Assembleur moléculairevignette|upright|Eric Drexler. Un assembleur moléculaire est un concept purement théorique. Tel que le définit Eric Drexler, il s'agit d' « une machine capable d'encadrer les réactions chimiques en positionnant les molécules réactives avec une précision nanométrique . » Drexler remarque que certaines molécules biologiques telles que les ribosomes correspondent à cette définition, puisque lorsqu'elles sont actives à l'intérieur d'un environnement cellulaire, elles reçoivent des instructions venant des acides ribonucléiques messagers (ARN messagers) qui leur permettent d'assembler des séquences déterminées d'acides aminés pour construire des protéines.
Auto-organisationL'auto-organisation ou autoorganisation est un phénomène par lequel un système s'organise lui-même. Les systèmes physiques, biologiques ou écologiques, sociaux, ont tendance à s'organiser d'eux-mêmes. Il s'agit soit de l'organisation initiale du système lors de son émergence spontanée, soit lorsque le système existe déjà de l'apparition d'une organisation plus ou complexe. L'auto-organisation agit ainsi à l'encontre de l'entropie (on parle alors de néguentropie), qui est une mesure de désordre.
CristallogenèseLa cristallogenèse est un processus de formation d'un cristal, soit en milieu naturel, soit de façon synthétique. Elle aboutit à la cristallisation, qui est le passage d'un état désordonné liquide (composé fondu, dissous dans un solvant), gazeux ou solide (verre) à un état ordonné solide. La cristallisation, transition de l'état liquide à l'état solide, concerne aussi le liquide dégénéré qui constitue les naines blanches. Ce phénomène, prédit théoriquement dès les années 1960, a été confirmé par les observations du satellite Gaïa en 2019.
Habitus (minéralogie)vignette|Cristaux d'aragonite sur le plafond de la grotte Ravenska jama en Slovénie. En minéralogie, l'habitus est la morphologie caractéristique d'un cristal, c'est-à-dire le mode d'association le plus fréquent de ses formes cristallines. Par exemple, le diamant et la pyrite cristallisent tous deux dans le système cubique. Cependant, le diamant se présente habituellement sous la forme (habitus) d'octaèdres brillants, alors que la pyrite forme généralement des cubes aux faces striées, moins souvent des octaèdres.
Crystalline siliconCrystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.