Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Robotvignette|Atlas (2013), robot androïde de Boston Dynamics vignette|Bras manipulateurs dans un laboratoire (2009) vignette|NAO (2006), robot humanoïde éducatif d'Aldebaran Robotics vignette|DER1 (2005), un actroïde d'accueil vignette|Roomba (2002), un robot ménager Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçu pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Robotiquethumb|upright=1.5|Nao, un robot humanoïde. thumb|upright=1.5|Des robots industriels au travail dans une usine. La robotique est l'ensemble des techniques permettant la conception et la réalisation de machines automatiques ou de robots. L'ATILF donne la définition suivante du robot : « il effectue, grâce à un système de commande automatique à base de microprocesseur, une tâche précise pour laquelle il a été conçu dans le domaine industriel, scientifique, militaire ou domestique ».
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Intelligence distribuéeL'intelligence distribuée, appelée aussi intelligence en essaim, désigne l'apparition de phénomènes cohérents à l'échelle d'une population dont les individus agissent selon des règles simples. L'interaction ou la synergie entre actions individuelles simples peut de façons variées permettre l'émergence de formes, organisations, ou comportements collectifs, complexes ou cohérents, tandis que les individus eux se comportent à leur échelle indépendamment de toute règle globale.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).