Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Algorithmic efficiencyIn computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. An algorithm must be analyzed to determine its resource usage, and the efficiency of an algorithm can be measured based on the usage of different resources. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage.
Recherche tabouLa recherche tabou est une métaheuristique d'optimisation présentée par Fred W. Glover en 1986. On trouve souvent l'appellation recherche avec tabous en français. Cette méthode est une métaheuristique itérative qualifiée de recherche locale au sens large. L'idée de la recherche tabou consiste, à partir d'une position donnée, à en explorer le voisinage et à choisir la position dans ce voisinage qui minimise la fonction objectif.
Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).