Longueur de cléEn cryptologie, la longueur de clé ( ou key length) est la taille mesurée en bits de la clé de chiffrement (ou de signature) utilisée par un algorithme de chiffrement. La longueur de la clé est différente de la sécurité cryptographique, qui est la mesure de l'attaque la plus rapide contre un algorithme, aussi mesurée en bits. La sécurité évaluée d'un cryptosystème ne peut pas dépasser sa longueur de clé (étant donné que tout algorithme peut être cassé par force brute), mais elle peut être plus petite.
Clé de chiffrementUne clé est un paramètre utilisé en entrée d'une opération cryptographique (chiffrement, déchiffrement, scellement, signature numérique, vérification de signature). Une clé de chiffrement peut être symétrique (cryptographie symétrique) ou asymétrique (cryptographie asymétrique). Dans le premier cas, la même clé sert à chiffrer et à déchiffrer. Dans le second cas on utilise deux clés différentes, la clé publique est utilisée au chiffrement alors que celle servant au déchiffrement est gardée secrète : la clé secrète, ou clé privée, et ne peut pas se déduire de la clé publique.
Contrainte (mathématiques)En mathématiques, une contrainte est une condition que doit satisfaire la solution d'un problème d'optimisation. On distingue deux types de contraintes : les contraintes d'égalité et les contraintes en inégalité. L'ensemble des solutions satisfaisant toutes les contraintes est appelé l'ensemble admissible. On considère un problème d'optimisation classique : avec et et désigne le vecteur . Dans cet exemple, la première ligne montre la fonction à minimiser (appelée fonction objectif ou fonction-coût) mais aussi l'ensemble où la solution doit être recherché, ici C.
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.
Commerce en lignealt=Icône représentant un charriot sur un site de commerce en ligne.|vignette|Icône représentant un chariot de supermarché sur un site de commerce en ligne. Le commerce en ligne, commerce électronique ou e-commerce, est l'échange pécuniaire de biens, de services ou d'informations par l'intermédiaire des réseaux informatiques, notamment Internet. Dans le cadre du commerce interentreprises, les commerçants utilisent depuis de nombreuses années des réseaux de type échange de données informatisé (EDI).