Coefficient de transfert thermiqueLe coefficient de transfert thermique ou coefficient de transmission thermique est un coefficient quantifiant le flux d'énergie traversant un milieu, par unité de surface, de volume ou de longueur. L'inverse du coefficient de transfert thermique est la résistance thermique. C'est un terme important dans l'équation d'un transfert thermique et permet d'indiquer la facilité avec laquelle l'énergie thermique passe un obstacle ou un milieu. Dans le cas d'un transfert surfacique, il est appelé coefficient de transfert thermique surfacique ou résistance thermique d'interface.
Table of thermodynamic equationsCommon thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows: List of thermodynamic propertiesThermodynamic potentialFree entropy and Defining equation (physical chemistry) Many of the definitions below are also used in the thermodynamics of chemical reactions. Heat capacity and Thermal expansion Thermal conductivity The equations in this article are classified by subject. where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
Transfert thermiquevignette|alt=Autour d'un feu, des mains reçoivent sa chaleur par rayonnement (sur le côté), par convection (au-dessus de ses flammes) et par conduction (à travers un ustensile en métal).|Les modes de transfert thermique ( en anglais pour « rayonnement »). Un transfert thermique, appelé plus communément chaleur, est l'un des modes d'échange d'énergie interne entre deux systèmes, l'autre étant le travail : c'est un transfert d'énergie thermique qui s'effectue hors de l'équilibre thermodynamique.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Convection thermiqueLa convection (thermique) désigne le transfert d'énergie thermique au sein d'un fluide en mouvement ou entre un fluide en mouvement et une paroi solide. Ce transfert d'énergie est réalisé par deux modes de transfert élémentaire combinés que sont l'advection et la diffusion. La convection constitue, avec la conduction et le rayonnement, l'un des trois modes d'échange de chaleur entre deux systèmes, et diffère de ces derniers par la méthode de transfert.
Capteur de flux thermiquevignette|273x273px|Exemple d'un capteur de flux thermique, HFP01. Ce capteur est généralement utilisé dans la mesure de la résistance thermique et du flux de chaleur sur les enveloppes de construction (murs, toits). De plus, ce type de capteur peut être creusé pour mesurer le flux de chaleur du sol. Diamètre 80 mm Un capteur de flux thermique (anglais: Heat Flux Sensor, allemande: Wärmeflusssensor) est un nom ordinairement utilisé pour un transducteur produisant un signal proportionnel au flux thermique local.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation de BoltzmannL' équation de Boltzmann ou équation de transport de Boltzmann décrit le comportement statistique d'un système thermodynamique hors état d'équilibre, conçue par Ludwig Boltzmann en 1872. L'exemple classique d'un tel système est un fluide avec des gradients de température dans l'espace provoquant un flux de chaleur des régions les plus chaudes vers les plus froides, par le transport aléatoire mais orienté des particules composant ce fluide.
Boundary layer thicknessThis page describes some of the parameters used to characterize the thickness and shape of boundary layers formed by fluid flowing along a solid surface. The defining characteristic of boundary layer flow is that at the solid walls, the fluid's velocity is reduced to zero. The boundary layer refers to the thin transition layer between the wall and the bulk fluid flow. The boundary layer concept was originally developed by Ludwig Prandtl and is broadly classified into two types, bounded and unbounded.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).