Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Classification doubleLa Classification double ou est une technique d'exploration de données non-supervisée permettant de segmenter simultanément les lignes et les colonnes d'une matrice. Plus formellement, la définition de la classification double peut s'exprimer de la manière suivante (pour le type de classification par colonne) : soit une matrice , soient , alors est appelé de lorsque pour tout Le a été utilisé massivement en biologie - par exemple dans l'analyse de l'expression génétique par Yizong Cheng et George M.
Inefficacité XL’inefficacité X est l'écart entre le comportement efficace, efficient et maximisateur qu'une entreprise devrait avoir et son comportement réel. Cette inefficacité est dû à un manque de pression compétitive : cette absence ne pousse pas les entreprises à l'innovation. Ce concept fut introduit par Harvey Leibenstein en 1966 dans l'American Economic Review. Dans la théorie économique standard, les entreprises cherchent à maximiser leurs profits et à être le plus efficientes que possible dans la gestion de leurs ressources.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
BiostatistiqueLa biostatistique (mot-valise issu des champs de la biologie et des statistiques) est un champ scientifique constitué par l'application de la science statistique à la biologie et à la médecine. Le domaine d'application des biostatistiques est large. Il peut s'agir de biométrie, de conception méthodologique d'études biologiques ou cliniques, ou encore du recueil, de l'analyse et du traitement statistique de données recueillis lors d'études écologiques, biologiques, agronomiques, halieutiques, de santé publique, de santé environnementale, d'études épidémiologiques, médicales et/ou cliniques, pharmaceutiques, agropharmaceutiques.
List of archaeological periodsThe names for archaeological periods in the list of archaeological periods vary enormously from region to region. This is a list of the main divisions by continent and region. Dating also varies considerably and those given are broad approximations across wide areas. The three-age system has been used in many areas, referring to the prehistorical and historical periods identified by tool manufacture and use, of Stone Age, Bronze Age and Iron Age.
Tropical cyclone forecast modelA tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.