Automate sur les mots infinisEn informatique théorique, et spécialement en théorie des automates, un automate sur les mots infinis ou ω-automate est un automate fini qui accepte des mots infinis. Un tel automate lit un mot infini, ainsi, l'exécution ne s'arrête pas ; les conditions d'acceptation portent sur l'exécution elle-même là où elles ne traitent que de l'état d'arrivée (et de la possibilité de lire le mot) dans le cas des automates sur les mots finis.
Automate fini non déterministeUn automate fini (on dit parfois, par une traduction littérale de l'anglais, machine à états finis, au lieu de machine avec un nombre fini d'états ou machine à états finie ou machine finie à états), finite-state automaton ou finite-state machine (FSA, FSM), est une machine abstraite qui est un outil fondamental en mathématiques discrètes et en informatique. On les retrouve dans la modélisation de processus, le contrôle, les protocoles de communication, la vérification de programmes, la théorie de la calculabilité, dans l'étude des langages formels et en compilation.
Automate fini déterministe bidirectionnelEn informatique théorique, et notamment en théorie des automates, un automate fini déterministe bidirectionnel (en anglais ) souvent abrégé en 2AFD (en anglais 2DFA), est un automate fini déterministe qui peut relire des symboles d'entrée déjà vus. Comme pour les automates finis déterministes usuels, un 2AFD possède un nombre fini d'états, et le passage d'un état à un autre est régi par des transitions en fonction du symbole lu. De plus, une transition porte une information sur la direction de déplacement de la lecture, soit vers la droite soit vers la gauche.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.
Automate de BüchiEn informatique théorique, un automate de Büchi est un ω-automate ou automate fini opérant sur des mots infinis, avec une condition d'acceptation particulière : une trace (ou calcul ou chemin infini) est réussie si et seulement si elle passe un nombre infini de fois par au moins un état acceptant. Un mot infini est accepté s'il est l'étiquette d'un calcul réussi. Ce type d'automate est utilisé en vérification de modèles. Ce type d'automate a été défini par le mathématicien Julius Richard Büchi.
Automate fini déterministeUn automate fini déterministe, parfois abrégé en AFD (en anglais deterministic finite automaton, abrégé en DFA) est un automate fini dont les transitions à partir de chaque état sont déterminées de façon unique par le symbole d'entrée. Un tel automate se distingue ainsi d'un automate fini non déterministe, où au contraire plusieurs possibilités de transitions peuvent exister simultanément pour un état et un symbole d'entrée donné.
Automate à pileUn automate à pile est une machine abstraite utilisée en informatique théorique et, plus précisément, en théorie des automates. Un automate à pile est une généralisation des automates finis : il dispose en plus d'une mémoire infinie organisée en pile (last-in/first-out ou LIFO). Un automate à pile prend en entrée un mot et réalise une série de transitions. Il effectue pour chaque lettre du mot une transition, dont le choix dépend de la lettre, de l'état de l'automate et du sommet de la pile ; il peut aussi modifier le contenu de la pile.
Automate d'arbresEn informatique théorique, plus précisément en théorie des langages, un automate d'arbre est une machine à états qui prend en entrée un arbre, plutôt qu'une chaîne de caractères pour les automates plus conventionnels, comme les automates finis. Comme pour les automates classiques, les automates d'arbres finis (FTA pour finite tree automata en anglais) peuvent être déterministes ou pas. Suivant la façon dont les automates se « déplacent » sur l'arbre qu'ils traitent, les automates d'arbres peuvent être de deux types : (a) ascendants ; (b) descendants.
Construction par sous-ensemblesEn informatique théorique, et notamment en théorie des automates, l'algorithme appelé la construction par sous-ensembles, en anglais « powerset construction » ou « subset construction », est la méthode usuelle pour convertir un automate fini non déterministe (abrégé en « AFN ») en un automate fini déterministe (abrégé en « AFD ») équivalent, c'est-à-dire qui reconnaît le même langage rationnel. L'existence même d'une conversion, et l'existence d'un algorithme pour la réaliser, est remarquable et utile.
Automate probabilisteEn mathématiques et en informatique théorique, et notamment en théorie des automates, un automate probabiliste est une généralisation des automates finis non déterministes; chaque transition de l'automate est équipée d'une probabilité (un nombre réel entre 0 et 1). Les transitions sont représentées de manière compacte par des matrices qui sont des matrices stochastiques. Les langages reconnus par les automates probabilistes sont appelés langages stochastiques; ils comprennent, et étendent, la famille des langages rationnels.