Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111) Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.
Christophe Ballif, Aïcha Hessler-Wyser, Antonin Faes, Jacques Levrat, Umang Bhupatrai Desai, Gianluca Cattaneo, Fahradin Mujovi, Matthieu Despeisse
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu