Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Federal enterprise architectureA federal enterprise architecture framework (FEAF) is the U.S. reference enterprise architecture of a federal government. It provides a common approach for the integration of strategic, business and technology management as part of organization design and performance improvement. The most familiar federal enterprise architecture is the enterprise architecture of the Federal government of the United States, the U.S. "Federal Enterprise Architecture" (FEA) and the corresponding U.S. "Federal Enterprise Architecture Framework" (FEAF).
Connectivity (graph theory)In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Chaîne (théorie des graphes)Dans un graphe non orienté, une chaîne reliant à , notée , est définie par une suite finie d'arêtes consécutives, reliant à . La notion correspondante dans les graphes orientés est celle de chemin. Une chaîne élémentaire est une chaîne ne passant pas deux fois par un même sommet, c'est-à-dire dont tous les sommets sont distincts. Une chaîne simple est une chaîne ne passant pas deux fois par une même arête, c'est-à-dire dont toutes les arêtes sont distinctes. Un cycle est une chaîne simple dont les deux extrémités sont identiques.
Pair-à-pairLe pair-à-pair ou système pair à pair (en anglais peer-to-peer, souvent abrégé « P2P ») est un modèle d'échange en réseau où chaque entité est à la fois client et serveur, contrairement au modèle client-serveur. Les termes « pair », « nœud » et « utilisateur » sont généralement utilisés pour désigner les entités composant un tel système. Un système pair à pair peut être partiellement centralisé (une partie de l'échange passe par un serveur central intermédiaire) ou totalement décentralisé (les connexions se font entre participants sans infrastructure particulière).
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Réseau superposéthumb|Un réseau superposé et ses couches successives. Un réseau superposé, ou réseau overlay, est un réseau informatique bâti sur un autre réseau. Les nœuds du réseau superposé sont interconnectés par des liens logiques du réseau sous-jacent. La complexité du réseau sous-jacent n'est pas visible par le réseau superposé. Cette abstraction du réseau sous-jacent est une source d'inefficacité des flux, qui peuvent transiter plusieurs fois par les mêmes liens physiques.
Distance (théorie des graphes)En théorie des graphes, la distance entre deux nœuds d'un graphe est la longueur d'un plus court chemin entre ces deux nœuds. La longueur d'un chemin est sa longueur en nombre d'arêtes. Pour un graphe pondéré c'est la somme des poids des arêtes empruntées. Pour les graphes non orientés, c'est une distance au sens mathématique, tandis que pour les graphes orientés elle ne vérifie pas la propriété de symétrie. Cette notion permet entre autres de définir le diamètre et le rayon d'un graphe. Catégorie:Concept