Univers de GödelL'univers de Gödel est une solution aux équations de la relativité générale publiée par le mathématicien Kurt Gödel en 1949. Cette solution possède plusieurs propriétés remarquables. Elle décrit un univers en rotation, c'est-à-dire un univers qui possède une direction privilégiée que l'on peut localement assimiler à un axe de rotation. Par ailleurs, la structure de l'espace-temps permet l'existence de courbes de genre temps refermées sur elles-mêmes. Ces travaux sont à l'origine de la recherche d'un plus grand nombre de solutions exactes aux équations d'Einstein.
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Electrovacuum solutionIn general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.
Semi-normeEn mathématiques, une semi-norme est une application d'un espace vectoriel dans l'ensemble des réels positifs. C'est « presque » une norme mais une propriété est manquante : la semi-norme d'un vecteur non nul peut être nulle. En analyse fonctionnelle, cette situation est relativement courante. L'espace vectoriel est un espace de fonctions d'un espace mesuré à valeurs dans les réels ou complexes. La semi-norme correspond par exemple à l'intégrale de la valeur absolue ou du module de la fonction.
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
Loadable Kernel ModuleDans un système d'exploitation, un module est une partie du noyau qui peut être intégrée pendant son fonctionnement. Le terme anglais généralement employé pour les désigner est Loadable Kernel Module, abrégé LKM, ou . Cette fonctionnalité existe dans les noyaux Linux et les noyaux BSD. C'est une alternative aux fonctionnalités compilées dans le noyau, qui ne peuvent être modifiées qu'en relançant le système. Les modules du noyau Linux sont généralement placés dans /lib/modules. Ils utilisent l'extension .