In mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for dual include polarer Raum [Hahn 1927], espace conjugué, adjoint space [Alaoglu 1940], and transponierter Raum [Schauder 1930] and [Banach 1932]. The term dual is due to Bourbaki 1938. Given any vector space over a field , the (algebraic) dual space (alternatively denoted by or ) is defined as the set of all linear maps (linear functionals). Since linear maps are vector space homomorphisms, the dual space may be denoted . The dual space itself becomes a vector space over when equipped with an addition and scalar multiplication satisfying: for all , , and . Elements of the algebraic dual space are sometimes called covectors, one-forms, or linear forms. The pairing of a functional in the dual space and an element of is sometimes denoted by a bracket: or . This pairing defines a nondegenerate bilinear mapping called the natural pairing. Dual basis If is finite-dimensional, then has the same dimension as . Given a basis in , it is possible to construct a specific basis in , called the dual basis. This dual basis is a set of linear functionals on , defined by the relation for any choice of coefficients .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
MATH-115(a): Advanced linear algebra II - diagonalization
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
PHYS-316: Statistical physics II
Introduction à la théorie des transitions de phase
Afficher plus
Séances de cours associées (82)
Expansion du produit opérateur
Explore l'expansion du produit opérateur (OPE) et son rôle dans Conformal Bootstrap.
Distributions et dérivés
Couvre les distributions, les dérivés, la convergence et les critères de continuité dans les espaces de fonctions.
Dualité faible et forte
Couvre la dualité faible et forte dans les problèmes d'optimisation, en se concentrant sur les multiplicateurs de Lagrange et les conditions KKT.
Afficher plus
Publications associées (91)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.