Concept

Semi-norme

Résumé
En mathématiques, une semi-norme est une application d'un espace vectoriel dans l'ensemble des réels positifs. C'est « presque » une norme mais une propriété est manquante : la semi-norme d'un vecteur non nul peut être nulle. En analyse fonctionnelle, cette situation est relativement courante. L'espace vectoriel est un espace de fonctions d'un espace mesuré à valeurs dans les réels ou complexes. La semi-norme correspond par exemple à l'intégrale de la valeur absolue ou du module de la fonction. Une fonction nulle sur l'espace sauf sur un ensemble négligeable est non nulle mais de semi-norme nulle. La topologie induite par la semi-norme confère à l'espace une structure d'espace vectoriel topologique, non nécessairement séparé. En quotientant cet espace par un sous-espace bien choisi, on obtient un espace vectoriel normé. Dans la théorie de l'intégrale de Lebesgue, considérer de tels quotients amène à travailler non plus sur des fonctions, mais sur des classes de fonctions, équivalentes donc identifiées si elles ne diffèrent que sur un ensemble négligeable. Norme (mathématiques) Dans cet article, E désigne un espace vectoriel sur un corps commutatif K. En général, K désigne le corps des réels ou des complexes, même si la théorie s'applique dans un contexte plus général. La semi-norme est une norme si et seulement si elle vérifie la propriété supplémentaire suivante : séparation : . Deux configurations introduisent naturellement une semi-norme en analyse fonctionnelle : Soient une mesure sur un espace mesurable (par exemple : muni de la tribu borélienne et la mesure de Lebesgue), et un réel (le cas le plus simple est ). L'ensemble des fonctions mesurables de Ω dans K dont le module à la puissance p est μ-intégrable est un espace vectoriel noté Lp(Ω, μ). Il est naturellement muni de la semi-norme définie par :.La propriété de séparation est absente : dès qu'une fonction est nulle sur le complémentaire d'un ensemble μ-négligeable, sa semi-norme est nulle. Un deuxième exemple est un ingrédient dans la définition de la topologie faible.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.