Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, une semi-norme est une application d'un espace vectoriel dans l'ensemble des réels positifs. C'est « presque » une norme mais une propriété est manquante : la semi-norme d'un vecteur non nul peut être nulle. En analyse fonctionnelle, cette situation est relativement courante. L'espace vectoriel est un espace de fonctions d'un espace mesuré à valeurs dans les réels ou complexes. La semi-norme correspond par exemple à l'intégrale de la valeur absolue ou du module de la fonction. Une fonction nulle sur l'espace sauf sur un ensemble négligeable est non nulle mais de semi-norme nulle. La topologie induite par la semi-norme confère à l'espace une structure d'espace vectoriel topologique, non nécessairement séparé. En quotientant cet espace par un sous-espace bien choisi, on obtient un espace vectoriel normé. Dans la théorie de l'intégrale de Lebesgue, considérer de tels quotients amène à travailler non plus sur des fonctions, mais sur des classes de fonctions, équivalentes donc identifiées si elles ne diffèrent que sur un ensemble négligeable. Norme (mathématiques) Dans cet article, E désigne un espace vectoriel sur un corps commutatif K. En général, K désigne le corps des réels ou des complexes, même si la théorie s'applique dans un contexte plus général. La semi-norme est une norme si et seulement si elle vérifie la propriété supplémentaire suivante : séparation : . Deux configurations introduisent naturellement une semi-norme en analyse fonctionnelle : Soient une mesure sur un espace mesurable (par exemple : muni de la tribu borélienne et la mesure de Lebesgue), et un réel (le cas le plus simple est ). L'ensemble des fonctions mesurables de Ω dans K dont le module à la puissance p est μ-intégrable est un espace vectoriel noté Lp(Ω, μ). Il est naturellement muni de la semi-norme définie par :.La propriété de séparation est absente : dès qu'une fonction est nulle sur le complémentaire d'un ensemble μ-négligeable, sa semi-norme est nulle. Un deuxième exemple est un ingrédient dans la définition de la topologie faible.
Marc-Edouard Baptiste Grégoire Schultheiss
Marco Picasso, Paride Passelli